A transverse wave is described by the equation $y = {y_0}\,\sin \,2\pi \,\left[ {ft - \frac{x}{\lambda }} \right]$ . The maximum particle velocity is equal to four times the wave velocity if
$\lambda \, = \,\frac{{\pi {y_0}}}{4}$
$\lambda \, = \,\frac{{\pi {y_0}}}{2}$
$\lambda \, = \,\pi {y_0}$
$\lambda \, = \,2\pi {y_0}$
The equation of transverse wave in stretched string is $y = 5\,\sin \,2\pi \left[ {\frac{t}{{0.04}} - \frac{x}{{50}}} \right]$ Where distances are in cm and time in second. The wavelength of wave is .... $cm$
Two waves represented by ${y_1} = a\sin \frac{{2\pi}}{\lambda }\left( {vt - x} \right)$ and ${y_2} = a\cos \frac{{2\pi }}{\lambda }\left( {vt - x} \right)$ are superposed. The resultant wave has an amplitude equal to
The diagram shows snapshot of a wave at time $t = 0$. The particle at $x = x_1$ is moving upward at that instant. Direction of propagation of wave is
A string of mass $m$ and length $l$ hangs from ceiling as shown in the figure. Wave in string moves upward. $v_A$ and $v_B$ are the speeds of wave at $A$ and $B$ respectively. Then $v_B$ is
A car $P$ approaching a crossing at a speed of $10\,m/s$ sounds a horn of frequency $700 \,Hz$ when $40\,m$ in front of the crossing. Speed of sound in air is $340\,m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\,m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is ..... $Hz$